Система из двух проводящих тел, разделенных диэлектриком, образует конденсатор. Эти проводящие тела называются обкладками. Если к ним подключить источник энергии, то на них будет накапливаться заряд q, пропорциональный напряжению на конденсаторе uc
Например
Обозначение конденсатора
Коэффициент пропорциональности C между зарядом и напряжением называется емкостью конденсатора. Единица измерения емкости – фарада (Ф). Она имеет следующую размерность: Кл/В=А*с/В=с/Ом=Ом-1*с. Емкость зависит от формы, размеров конденсатора и от диэлектрической проницаемости диэлектрика между обкладками. Пусть напряжение, подаваемое источником на конденсатор, изменяется по закону:
uc=Ucmaxsin(ωt+ψ)
При его возрастании от нуля до максимального значения конденсатор заряжается, на его обкладки от источника поступает электрический заряд. При уменьшении напряжения от максимума до нуля, заряд стекает с конденсатора, он разряжается. Таким образом, в проводах, соединяющих конденсатор с остальной цепью, постоянно движется электрический заряд, т.е. протекает электрический ток. Вывод о наличии электрического тока мы делаем, совершенно не касаясь вопроса о том, какие процессы происходят между обкладками конденсатора. Величина тока определяется зарядом, прошедшим в единицу времени через поперечное сечение проводника:
Она зависит от емкости и скорости изменения питающего напряжения, т.е. от частоты. От этих же факторов зависит и электрическая проводимость участка цепи с конденсатором. Ее называют емкостной проводимостью и определяют по формуле:
Bc=ωC=2πfC
Величина, обратная емкостной проводимости, называется емкостным сопротивлением:
Подставляя в предыдущую формулу приложенное к конденсатору напряжение, получаем:
где,
Действующее значение тока:
Отсюда
Последние три уравнения представляют разные формы записи закона Ома для конденсатора. Запишем их в символической форме:
Или
Отсюда
Векторная диаграмма, построенная по приведенным выше уравнениям, показана на рисунке далее.
наклона каждого вектора к положительному направлению вещественной оси определяется начальными фазами в выражениях выше. Так как при определении напряжения Uc мы умножаем Ixc на -j, то вектор Uc оказывается повернутым относительно вектора тока на угол 90град. в отрицательном направлении, по часовой стрелке. Как отмечалось раньше, направление угла φ на диаграмме показывается от вектора тока к вектору напряжения.
Рис. 21.1 - Векторная диаграмма напряжения и тока в емкости
Пример 2.6. Напряжение на конденсаторе uC = 100sin (1000t –30°). Написать выражение мгновенного значения тока через конденсатор. Каким станет ток, если частота питающего напряжения увеличится вдвое? Емкость конденсатора С = 50 мкФ.
Решение. Определяем емкостное сопротивление:
Амплитуда тока
Так как
то начальная фаза тока
Таким образом,
При возрастании частоты вдвое емкостное сопротивление уменьшается также вдвое:
Амплитуда тока при этом увеличивается
Так как угол сдвига фаз не меняется, то мгновенное значение тока будет равно