ТОЭ - теоретические основы электротехники

ТОЭ, ТЭЦ, электротехника - все решения у нас!

Недорого, быстро, качественно, гарантия!

Заказать решение
Закажи прямо сейчас
+38(073)044-20-50 toe@toehelp.com.ua

№4 Метод узловых потенциалов.

Уравнения, составляемые по этому методу, называются узловыми уравнениями. В качестве неизвестных они содержат потенциалы узлов, причем один из них задается заранее – обычно принимается равным нулю.

Пусть таким узлом будет узел d: φd = 0. Равенство нулю какой-то точки схемы обычно показывается как ее заземление.

Метод узловых потенциалов.

Рис. 1.9 - Сложная электрическая цепь

Запишем для каждой ветви выражение закона Ома:

Метод узловых потенциалов.

Подставляя формулы (1.8) в систему (1.6) после несложных преобразований получаем следующие уравнения, количество которых на единицу меньше числа узлов:

Метод узловых потенциалов.

При решении практических задач указанный вывод не делают, а узловые уравнения записывают сразу, пользуясь следующим правилом.

Потенциал узла, для которого составляется уравнение (например, в первом уравнении последней системы – это узел а), умножается на сумму проводимостей ветвей, присоединенных к этому узлу: φа*(G1+G2+G3).Это произведение записывается в левой части уравнения со знаком плюс. Потенциал каждого соседнего узла (b и с) умножается на проводимости ветвей, лежащих между этим (соседним) узлом и узлом, для которого составляется уравнение.

Эти произведения φb*(G1 + G2) и φс*G3 записываются со знаком минус. В правой части уравнения стоит алгебраическая сумма произведений ЭДС на проводимости тех ветвей, которые присоединены к рассматриваемому узлу: E1G1, E2G2 и E3G3. Эти произведения записываются с плюсом, если ЭДС направлены к узлу, и с минусом, если от узла.

Найдя из (1.9) потенциалы узлов и подставляя их в (1.8), определяем токи ветвей.